Serveur d'exploration Melampsora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Population processes at multiple spatial scales maintain diversity and adaptation in the Linum marginale--Melampsora lini association.

Identifieur interne : 000094 ( Main/Exploration ); précédent : 000093; suivant : 000095

Population processes at multiple spatial scales maintain diversity and adaptation in the Linum marginale--Melampsora lini association.

Auteurs : Adnane Nemri [Australie] ; Luke G. Barrett ; Anna-Liisa Laine ; Jeremy J. Burdon ; Peter H. Thrall

Source :

RBID : pubmed:22859978

Descripteurs français

English descriptors

Abstract

Host-pathogen coevolution is a major driver of species diversity, with an essential role in the generation and maintenance of genetic variation in host resistance and pathogen infectivity. Little is known about how resistance and infectivity are structured across multiple geographic scales and what eco-evolutionary processes drive these patterns. Across southern Australia, the wild flax Linum marginale is frequently attacked by its rust fungus Melampsora lini. Here, we compare the genetic and phenotypic structure of resistance and infectivity among population pairs from two regions where environmental differences associate with specific life histories and mating systems. We find that both host and pathogen populations are genetically distinct between these regions. The region with outcrossing hosts and pathogens that go through asexual cycles followed by sexual reproduction showed greater diversity of resistance and infectivity phenotypes, higher levels of resistance and less clumped within-population spatial distribution of resistance. However, in the region where asexual pathogens infect selfing hosts, pathogens were more infective and better adapted to sympatric hosts. Our findings largely agree with expectations based on the distinctly different host mating systems in the two regions, with a likely advantage for hosts undergoing recombination. For the pathogen in this system, sexual reproduction may primarily be a survival mechanism in the region where it is observed. While it appears to potentially have adverse effects on local adaptation in the short term, it may be necessary for longer-term coevolution with outcrossing hosts.

DOI: 10.1371/journal.pone.0041366
PubMed: 22859978
PubMed Central: PMC3409196


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Population processes at multiple spatial scales maintain diversity and adaptation in the Linum marginale--Melampsora lini association.</title>
<author>
<name sortKey="Nemri, Adnane" sort="Nemri, Adnane" uniqKey="Nemri A" first="Adnane" last="Nemri">Adnane Nemri</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Plant Industry, Canberra, Australian Capital Territory</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barrett, Luke G" sort="Barrett, Luke G" uniqKey="Barrett L" first="Luke G" last="Barrett">Luke G. Barrett</name>
</author>
<author>
<name sortKey="Laine, Anna Liisa" sort="Laine, Anna Liisa" uniqKey="Laine A" first="Anna-Liisa" last="Laine">Anna-Liisa Laine</name>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22859978</idno>
<idno type="pmid">22859978</idno>
<idno type="doi">10.1371/journal.pone.0041366</idno>
<idno type="pmc">PMC3409196</idno>
<idno type="wicri:Area/Main/Corpus">000094</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000094</idno>
<idno type="wicri:Area/Main/Curation">000094</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000094</idno>
<idno type="wicri:Area/Main/Exploration">000094</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Population processes at multiple spatial scales maintain diversity and adaptation in the Linum marginale--Melampsora lini association.</title>
<author>
<name sortKey="Nemri, Adnane" sort="Nemri, Adnane" uniqKey="Nemri A" first="Adnane" last="Nemri">Adnane Nemri</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO Plant Industry, Canberra, Australian Capital Territory</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barrett, Luke G" sort="Barrett, Luke G" uniqKey="Barrett L" first="Luke G" last="Barrett">Luke G. Barrett</name>
</author>
<author>
<name sortKey="Laine, Anna Liisa" sort="Laine, Anna Liisa" uniqKey="Laine A" first="Anna-Liisa" last="Laine">Anna-Liisa Laine</name>
</author>
<author>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
</author>
<author>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Biological (MeSH)</term>
<term>Analysis of Variance (MeSH)</term>
<term>Australia (MeSH)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (physiology)</term>
<term>Disease Resistance (genetics)</term>
<term>Ecosystem (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Flax (genetics)</term>
<term>Flax (immunology)</term>
<term>Flax (microbiology)</term>
<term>Genetic Variation (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Phylogeography (MeSH)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Sympatry (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation biologique (MeSH)</term>
<term>Analyse de variance (MeSH)</term>
<term>Australie (MeSH)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (physiologie)</term>
<term>Interactions hôte-pathogène (MeSH)</term>
<term>Lin (génétique)</term>
<term>Lin (immunologie)</term>
<term>Lin (microbiologie)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phylogéographie (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Sympatrie (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Écosystème (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Australia</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Disease Resistance</term>
<term>Flax</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Basidiomycota</term>
<term>Lin</term>
<term>Résistance à la maladie</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Lin</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Flax</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lin</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Flax</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Analysis of Variance</term>
<term>Ecosystem</term>
<term>Evolution, Molecular</term>
<term>Genetic Variation</term>
<term>Host-Pathogen Interactions</term>
<term>Models, Genetic</term>
<term>Phenotype</term>
<term>Phylogeny</term>
<term>Phylogeography</term>
<term>Sympatry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation biologique</term>
<term>Analyse de variance</term>
<term>Australie</term>
<term>Interactions hôte-pathogène</term>
<term>Modèles génétiques</term>
<term>Phylogenèse</term>
<term>Phylogéographie</term>
<term>Phénotype</term>
<term>Sympatrie</term>
<term>Variation génétique</term>
<term>Écosystème</term>
<term>Évolution moléculaire</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Australie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Host-pathogen coevolution is a major driver of species diversity, with an essential role in the generation and maintenance of genetic variation in host resistance and pathogen infectivity. Little is known about how resistance and infectivity are structured across multiple geographic scales and what eco-evolutionary processes drive these patterns. Across southern Australia, the wild flax Linum marginale is frequently attacked by its rust fungus Melampsora lini. Here, we compare the genetic and phenotypic structure of resistance and infectivity among population pairs from two regions where environmental differences associate with specific life histories and mating systems. We find that both host and pathogen populations are genetically distinct between these regions. The region with outcrossing hosts and pathogens that go through asexual cycles followed by sexual reproduction showed greater diversity of resistance and infectivity phenotypes, higher levels of resistance and less clumped within-population spatial distribution of resistance. However, in the region where asexual pathogens infect selfing hosts, pathogens were more infective and better adapted to sympatric hosts. Our findings largely agree with expectations based on the distinctly different host mating systems in the two regions, with a likely advantage for hosts undergoing recombination. For the pathogen in this system, sexual reproduction may primarily be a survival mechanism in the region where it is observed. While it appears to potentially have adverse effects on local adaptation in the short term, it may be necessary for longer-term coevolution with outcrossing hosts.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22859978</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Population processes at multiple spatial scales maintain diversity and adaptation in the Linum marginale--Melampsora lini association.</ArticleTitle>
<Pagination>
<MedlinePgn>e41366</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0041366</ELocationID>
<Abstract>
<AbstractText>Host-pathogen coevolution is a major driver of species diversity, with an essential role in the generation and maintenance of genetic variation in host resistance and pathogen infectivity. Little is known about how resistance and infectivity are structured across multiple geographic scales and what eco-evolutionary processes drive these patterns. Across southern Australia, the wild flax Linum marginale is frequently attacked by its rust fungus Melampsora lini. Here, we compare the genetic and phenotypic structure of resistance and infectivity among population pairs from two regions where environmental differences associate with specific life histories and mating systems. We find that both host and pathogen populations are genetically distinct between these regions. The region with outcrossing hosts and pathogens that go through asexual cycles followed by sexual reproduction showed greater diversity of resistance and infectivity phenotypes, higher levels of resistance and less clumped within-population spatial distribution of resistance. However, in the region where asexual pathogens infect selfing hosts, pathogens were more infective and better adapted to sympatric hosts. Our findings largely agree with expectations based on the distinctly different host mating systems in the two regions, with a likely advantage for hosts undergoing recombination. For the pathogen in this system, sexual reproduction may primarily be a survival mechanism in the region where it is observed. While it appears to potentially have adverse effects on local adaptation in the short term, it may be necessary for longer-term coevolution with outcrossing hosts.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nemri</LastName>
<ForeName>Adnane</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barrett</LastName>
<ForeName>Luke G</ForeName>
<Initials>LG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Laine</LastName>
<ForeName>Anna-Liisa</ForeName>
<Initials>AL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Burdon</LastName>
<ForeName>Jeremy J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thrall</LastName>
<ForeName>Peter H</ForeName>
<Initials>PH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>5R01 GMO74265-01A2</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000220" MajorTopicYN="N">Adaptation, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001315" MajorTopicYN="N" Type="Geographic">Australia</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019597" MajorTopicYN="N">Flax</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058974" MajorTopicYN="N">Phylogeography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061350" MajorTopicYN="N">Sympatry</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>03</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>06</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22859978</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0041366</ArticleId>
<ArticleId IdType="pii">PONE-D-11-08927</ArticleId>
<ArticleId IdType="pmc">PMC3409196</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Biol Sci. 2011 Apr 22;278(1709):1195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 Jul;174 Suppl 1:S43-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19441961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Apr;13(4):921-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2011 Jan 22;278(1703):218-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20685701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Jun;175(6):E149-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2006 Jul 22;273(1595):1825-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16790417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2010 May;91(5):1263-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20503859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Sep;11(9):918-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18479453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jul;8(4):349-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2011 Feb;24(2):391-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21091813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Sep;27(5):439-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11576428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Jun;53(3):704-716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2009 May;25(5):236-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19356982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1983 Nov;37(6):1210-1226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28556011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1992 Jan;89(1):53-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 1;28(19):2537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22820204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2002 Jul;56(7):1340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12206236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 May;55(5):869-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11430647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jan;8(1):103-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2012 May;15(5):425-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22372578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(11):2957-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Dec;23(12):678-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18947899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1991 Feb;45(1):205-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2010 Mar-Apr;101 Suppl 1:S13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2011 Feb;65(2):512-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2003 Jan 7;270(1510):19-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12590767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Jun;119(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19357828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2009 Feb;173(2):212-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20374141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2006 Apr 7;273(1588):797-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16618672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ecol. 2011 Jan;99(1):96-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21243068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Jul;17(14):3401-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18573166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2009 Sep;63(9):2213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19473396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Sep;61(9):2043-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17767581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1994 Nov 29;346(1317):271-80; discussion 280-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7708824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Jan;12(1):93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Jul;61(7):1613-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17598744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Apr;11(2):135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18329329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2009 Sep 15;19(17):1438-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19631541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1996;34:29-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1994 Oct;48(5):1564-1575</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):589-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2006 Feb 7;273(1584):267-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:381-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2001 Sep-Oct;92(5):447-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2010 Jan;11(1):19-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20078773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1991 Aug;45(5):1209-1217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Feb;148(2):905-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1991 Nov;45(7):1618-1627</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28564135</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Barrett, Luke G" sort="Barrett, Luke G" uniqKey="Barrett L" first="Luke G" last="Barrett">Luke G. Barrett</name>
<name sortKey="Burdon, Jeremy J" sort="Burdon, Jeremy J" uniqKey="Burdon J" first="Jeremy J" last="Burdon">Jeremy J. Burdon</name>
<name sortKey="Laine, Anna Liisa" sort="Laine, Anna Liisa" uniqKey="Laine A" first="Anna-Liisa" last="Laine">Anna-Liisa Laine</name>
<name sortKey="Thrall, Peter H" sort="Thrall, Peter H" uniqKey="Thrall P" first="Peter H" last="Thrall">Peter H. Thrall</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Nemri, Adnane" sort="Nemri, Adnane" uniqKey="Nemri A" first="Adnane" last="Nemri">Adnane Nemri</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000094 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000094 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22859978
   |texte=   Population processes at multiple spatial scales maintain diversity and adaptation in the Linum marginale--Melampsora lini association.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22859978" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Mon Nov 2 18:19:24 2020. Site generation: Thu Feb 15 23:05:49 2024